Unit 2: Introduction to Python

- Basics of Python programming, Python interpreter - interactive and script mode, the
structure of a program, indentation, identifiers, keywords, constants, variables, types
of operators, precedence of operators, data types, mutable and immutable data
types, statements, expressions, evaluation and comments, input and output
statements, data type conversion, debugging.

- Control Statements: if-else, for loop

- Lists: list operations - creating, initialising, traversing and manipulating lists, list
methods and built-in functions.

- Dictionary: concept of key-value pair, creating, initialising, traversing, updating and
deleting elements, dictionary methods and built-in functions.

2.1 Python Fundamentals

1. What is Python:- Python is a general-purpose, high level programming language. It
was created by Guido van Rossum, and released in 1991.
-In order to communicate with a computer system, we need a computer programming
language. This language may be C, C++, Java, Python or any other computer language.
Here we will discuss Python.
-Python is inspired by two languages - (i) ABC language which was an optional language
of BASIC language. (ii)Modula-3
2. Why Python:-
- Platform Independent (Cross-Platform)

Free and Open Source

simple syntax similar to the English language.

fewer lines than some other programming languages. interpreted Language.

Python can be treated in a procedural way, an object-orientated way. (OOL and POL.)
3. What can Python do?:- It is possible to develop various Apps/ Software’s with Python
like-
- Web development

Machine learning

Data Analysis

Scripting

Game development.

Embedded applications

Desktop applications
4. How To Use Python?:-
4.1 Python can be downloaded from www.python.org. (Standard Installation)
4.2. It is available in two versions- ¢ Python 2.x ¢ Python 3.x (It is in Syllabus)

OR

Apart from above standard Python. We have various Python IDEs and Code Editors. Some
of them are as under:-
(i) Anaconda Distribution:- free and open-source distribution of the Python. having
various inbuilt libraries and tools like jupyter Notebook, Spyder etc
(ii) PyCharm (iii) Canopy

(iv) Thonny (v) Visual Studio Code
(vi) Eclipse + PyDev (vii) Sublime Text
(viii JAtom (ix) GNU Emacs

(x) Vim (xi) Spyder and many more...

5. Python Interpreter - Interactive And Script Mode :-
We can work in Python in Two Ways:-
(i) Interactive Mode
(ii) Script Mode
(i) Interactive Mode:- it works like a command interpreter as shell prompt works in DOS
Prompt or Linux. On each (>>>) symbol we can execute one by one command.
(ii) Script Mode:- it used to execute the multiple instruction (complete program) at once.

6. Python Character Set:-
Character Set is a group of letters or signs which are specific to a language. Character set
includes letter, sign, number and symbol.
Letters: A-Z, a-z
Digits: 0-9
Special Symbols: _, +, -, *, /, (, #@, {, } etc.
White Spaces: blank space, tab, carriage return, newline, formfeed etc.
- Other characters: Python can process all characters of ASCII and UNICODE.

7. Python Tokens:-

Token is the smallest unit of any programming language. It is also known as Lexical Unit.
Types of token are

i. Keywords

ii. Identifiers (Names)
iii. Literals

iv. Operators

v. Punctuators

7.1 Keywords:- Keywords are reserved words. Each keyword has a specific meaning to
the Python interpreter. As Python is case sensitive, these cannot be used as identifiers,
variable name or any other purpose keywords must be written exactly as given below:-

7.2 Identifiers:- In programming languages, identifiers are names used to identify a
variable, function, or other entities in a program. The rules for naming an identifier in
Python are as follows:

- The name should begin with an uppercase or a lowercase alphabet or an underscore

sign ().

- This may be followed by any combination of characters a-z, A-Z, 0-9 or underscore

(L)- Thus, an identifier cannot start with a digit.

-It can be of any length. (However, it is preferred to keep it short and meaningful).

- It should not be a keyword or reserved word.

- We cannot use special symbols like !, @, #, $, %, etc. in identifiers.

Legal Identifier Names Example: myvar my_var _my_var myVar myvar2
Illegal Identifier Names Example:- 2Zmyvar my-var my var=

7.3 Literals/ Values:- Literals are often called Constant Values. Python permits following
types of literals -
a. String literals - “Rishaan”

b. Numeric literals - 10, 13.5, 3+5i
c. Boolean literals - True or False
d. Special Literal None

e. Literal collections

7.4 Operators:- An operator is used to perform specific mathematical or logical
operations on values. The values that the operator works on are called operands. Python
supports following types of operators -
Unary Operator

eUnary plus (+)

eUnary Minus (-)

eBitwise complement (~)

eLogical Negation (not)
Binary Operator

eArithmetic operator (+, -, *, /, %, **, //)

eRelational Operator(<, >, <=, >=, ==,!)

eLogical Operator (and, or)

eAssignment Operator (=, /=, +=, -=, *=, %=, **=, / /=)

*Bitwise Operator (& bitwise and, * bitwise xor,|bitwise or)

Shift operator (<< shift left, >> shift right)

eldentity Operator (is, is not)

eMembership Operator (in, not in)
7.5 Punctuators:-
Punctuators are symbols that are used in programming languages to organize sentence
structure, and indicate the rhythm and emphasis of expressions, statements, and
program structure. Common punctuators are: , “ # $ @ []{}=:;0),

8. Variable:-
Variables are containers for storing data values.
Unlike other programming languages, Python has no command for declaring a
variable.
A variable is created the moment you first assign a value to it.
Example:-
x5
y "John”
print(x)
print(y)
- Variables do not need to be declared with any particular type and can even change
type after they have been set.
x4 #xis of type int
x "Sally" # x is now of type str
print(x)
- String variables can be declared either by using single or double quotes:
x "lohn”
is the same as
x 'John’

Variable Names

A variable can have a short name (like x and y) or a more descriptive name (age, carname,
total_volume).

Rules for Python variables:

- Avariable name must start with a letter or the

- underscore character

- Avariable name cannot start with a number

- A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
- Variable names are case-sensitive (age, Age and AGE are three different variables)

Output Variable:-

The Python print statement is often used to output variables. To combine both text and a
variable, Python uses the, character:

x "awesome”

print("Python is ", x)
Display Multiple variable:-

x "awesome”

y=56

print(“Value of x and y is=" ,x,y)

9. Data Type:-
Every value belongs to a specific data type in Python. Data type identifies the type of data
which a variable can hold and the operations that can be performed on those data.

Data Types in Python:-
Numbers :- int, float and complex.

List :- [5, 3.4, "New Delhi", "20C", 45]
Tuple :- (10, 20, "Apple", 3.4, 'a")
Strings :- str 'Hello Friend'
- Set:-{2,6,9}
-Dictionary:- {'Fruit:'Apple’, 'Climate":'Cold’, 'Price(kg)':120}

Mutable and Immutable data type

Mutable:- The values stored can be changes, Size of object can be changed, e.g. List,
Dictionary

Immutable:- The value stored can not be changed, Size can not be changed, e.g. Tuple,
String

10. Expression in python:- An expression is a combination of values, i.e., constant ,
variable and operator.
e.g. Expression 6-3*2+7-1 evaluated as 6

11. Precedence and associativity of Arithmetic Operators:- Precedence and
associativity helps to evaluate an expression. Let’s take a look with following example:

Operator Description Associativity
() Parentheses left-to-right
ok Exponent right-to-left
*/ % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
i i: gg:gggi }giii\t}el:rtllfi\is/s gtr};rtleorrtehqalila:);oequal to left-to-right

Relational is equal to/is not equal to

left-to-right

is, is not Identity .

in, not in Membership operators left-to-right
& Bitwise AND left-to-right
A Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
not Logical NOT right-to-left
and Logical AND left-to-right
or Logical OR left-to-right
= Assignment

+= -= Addition/subtraction assignment

*= /= Multiplication/division assignment :

%= &= Modulus/bitwise AND assignment right-to-left
Az |= Bitwise exclusive/inclusive OR assignment

<<= >>= Bitwise shift left/right assignment

OPesalox Pscece dowme. £ Nssocabiv H

2%xx4+20 /2 -5XxXX2
P | [| e
L‘ﬁ 1 ((
2XXYy+4+ 20 /2- 25 f J
A~ k 0
‘f_/\ { e
6 + 20 /2 - 25
;,_[7\ f ed
[(3)
-/
[(| N g
1S + 10 - L >
k—T‘J £ 1 | AN
[@ —6ep s e
26 - 25 vJ
L
[12\
A‘\DJ f (

12. Comments in python:- Comments are non-executable statements of python. It
increases the readability and understandability of code.
Types of comment -

i. Single line comment (#) - comments only on a single line.
e.g. a=7 # 7 is assigned to variable ‘a’
print(a) # displaying the value stored in ‘a’

ii. Multi-line comment (‘“........... ") - Comments multiple line.
e.g. “Program -1
A program in python to store a value in
variable ‘a’ and display the value stored in it.
a=7

print(a)

224

13. Input and output in python:-
input () method - It is used to take input from the user.
print () method - It is used to display messages or result in output.

Example:-
Name input (“Enter your name : ”)

Marks int(input (“Enter your marks ”))
print(“Your name is ”, Name)
print(“You got ”, Marks, “ marks”)

14. Debugging:- Debugging is a process of locating and removing errors from a program.
Types of errors:

a. Compile Time Error: (i) Syntax Error (ii) Semantics Error

b. Run Time Error

c. Logical Error

a. Compile Time Error: Compile time errors are those errors that occur at the time of
compilation of the program. There are two types of compile time errors:

i. Syntax Error: These errors occur due to violation of grammatical rules of a

programming language.

Example:

x=10

y=20

if(x<y):

Print(“a is greater than b”) # Syntax error, P is capital in Print statement

b. Semantics Error: Semantic errors occur when the statements written in the
program are not meaningful.

Example:

a=10

b=20

a+b = c # expression cannot come on the left side of the assignment operator

b. Run Time Error: Errors that occur during the execution or running the program are
known as run time errors. When a program “crashes” or “abnormally terminated” during
the execution, then these type errors are run time errors.

Example: When a loop executes infinite time.

a=1

while a<5: # value of a is always less than 5, infinite loop
print(a)
a=a-1

c. Logical Error: These types of errors occur due to wrong logic. When a program
successfully executes but giving wrong output, then it is known as logical error.
Example:

a=10

b=20

c=30

average=(a+b+c)/2 # wrong logic to find the average

print(average)

OUTPUT:

30.0

Steps to debug a program:

a. Carefully follow the syntax of a language

b. Spot the origin of error

c. Read the type of error and understand it well

d. Use intermediate print statements to know the value and type of a variable

e. Trace the code carefully

Note: There are debuggers available in almost all sophisticated python IDEs. They are
implemented with pdb. To know more, read the official documentation here:
https://docs.python.org/3/library/pdb.html

15. Supplementary Reading:

Exception handling in python: (To deal with run time errors/exceptions)

Exception: The unusual and unexpected condition other than syntax or logical errors,
encountered by a program at the time of execution, is called exception.

The purpose of the exception handling mechanism is to provide means to detect and
report an exceptional circumstance, so that appropriate action can be taken.
Exception handling in python can be done using try and except blocks.

Syntax:
try:

Code that may generate an exception
except:

Code for handling the exception

Example:
num1=int(input(“Enter first number :"”))
num?2=int(input(“Enter second number: “))
try:

r=numl1/num?2

print(“Resultis :”, r)
except:

print(“Divided by zero”)

OUTPUT:

Enter first number : 30
Enter second number: 0
Divided by zero

https://docs.python.org/3/library/pdb.html

2.2 Python Control Statements
In any programming language a program may execute sequentially, selectively or
iteratively. Every programming language provides constructs to support Sequence,
Selection and Iteration. In Python all these constructs can broadly be categorised in 2
categories.

Conditional Control Construct
(Selection, iteration)

Unconditional Control Construct
(pass, break,continue, exit(), quit())

Python have following types of control statements

1. Selection (branching) Statement
2. [teration (looping) Statement
3. Jumping (break / continue)Statement

Python Selection Statements
Python have following types of selection statements

1. if statement

2. if else statement

3. Ladder if else statement (if-elif-else)
4. Nested if statement

If statements
This construct of a python program consists of one if condition with one block of
statements. When the condition becomes true then executes the block given below it.
Syntax:
if (condition):
Statement(s)
Example:
age=int(input(“Enter Age: “))
if (age>=18):
print(“You are eligible for vote”)
if(age<0):
print(“You entered Negative Number”)

if - else statements
This construct of a python program consists of one if condition with two blocks. When
the condition becomes true then executes the block given below it. If the condition
evaluates the result as false, it will execute the block given below else.
Syntax:
if (condition):
Statement(s)
else:

Statement(s)

Example
age=int(input(“Enter Age: “))
if (age>=18):
print(“You are eligible for vote”)
else:
print(“You are not eligible for vote”)

Ladder if else statements (if-elif-else)

This construct of a python program consists of more than one if condition. When the first
condition evaluates the result as true then executes the block given below it. If the
condition evaluates the result as false, it transfers the control at the else part to test
another condition. So, it is a multi-decision making construct.

Syntax:

if (condition-1):
Statement(s)
elif (condition-2):
Statement(s)
elif (condition-3):
Statement(s)
else:
Statement(s)
Example:
num=int(input(“Enter Number: “))
If (num>=0):
print(“You entered positive number”)
elif (num<0):
print(“You entered Negative number”)
else:
print(“You entered Zero ”)

Nested if statements
It is the construct where one if condition takes part inside of another if condition. This
construct consists of more than one if condition. Block executes when the condition
becomes false and the next condition evaluates when the first condition becomes true.
So, it is also a multi-decision making construct.
Syntax:
if (condition-1):

if (condition-2):

Statement(s)
else:
Statement(s)

Example:
num=int(input(“Enter Number: “))
if (num<=0):
if (num<0):
print(“You entered Negative number”)
else:
print(“You entered Zero ”)
else:
print(“You entered Positive number”)

Python Iteration Statements
The iteration (Looping) constructs mean to execute the block of statements again and
again depending upon the result of condition. This repetition of statements continues till
condition meets True result. As soon as the condition meets a false result, the iteration

stops.

Python supports following types of iteration statements
1. while

2. for

Four Essential parts of Looping:

i. [nitialization of control variable

il. Condition testing with control variable

iii. Body of loop Construct

iv. Increment / decrement in control variable
Python while loop

The while loop is a conditional construct that executes a block of statements again and
again till the given condition remains true. Whenever the condition meets result false
then loop will terminate.

Syntax:
Initialization of control variable
while (condition):

Example: Sum of 1 to 10 numbers.
num=1
sum=0
while(num<=10):
sum + num
num + 1
print(“The Sum of 1- 10 numbers: “;sum)

Python range() Function
The range() function returns a sequence of numbers, starting from 0 by default, and
increments by 1 (by default), and ends at a specified number.

Syntax:
range(start value, stop value, step value)
Where all 3 parameters are of integer type

@® Startvalue is Lower Limit

@® Stop value is Upper Limit
@® Step value is Increment / Decrement

Note: The Lower Limit is included but Upper Limit is not included in result.

Example

range(5) => sequence of 0,1,2,3,4

range(2,5) =>sequence of 2,3,4

range(1,10,2) =>sequence of 1,3,5,7,9

range(5,0,-1) =>sequence of 5,4,3,2,1

range(0,-5) =>sequence of [] blank list
(default Step is +1)

range(0,-5,-1) =>sequence of 0, -1, -2, -3, -4
range(-5,0,1) =>sequence of -5, -4, -3,-2, -1
range(-5,1,1) =>sequence of -5, -4,-3,-2,-1,0

Python for loop

A for loop is used for iterating over a sequence (that is either a list, a tuple, a string etc.)
With for loop we can execute a set of statements, and for loop can also execute once for
each element in a list, tuple, set etc.

Example: print 1 to 10 numbers
for num in range(1,11,1):

print(num, end="")
Output: 12345678910

Un- Conditional Control Construct
(pass, break, continue, exit(), quit())

pass Statement (Empty Statement)

The pass statement does nothing, but it is used to complete the syntax of programming
concepts. Pass is useful in the situation where the user does not require any action but
syntax requires a statement. The Python compiler encounters a pass statement then it
does nothing but transfer the control in flow of execution.

Example
a=int(input("Enter first Number: "))
b=int(input("Enter Second Number: "))
if(b==0):

pass
else:

print("a/b="a/b)

Jumping Statements
@® break
@® continue

break Statement

The jump- break statement enables you to skip over a part of code that is used in a loop
even if the loop condition remains true. It terminates to that loop in which it lies. The
execution continues from the statement which finds the loop terminated by break.

Continue Statement

Continue statement is also a jump statement. With the help of a continue statement, some
of the statements in the loop skipped over and started the next iteration. It forcefully stop
the current iteration and transfers the flow of control at the loop controlling condition.

