

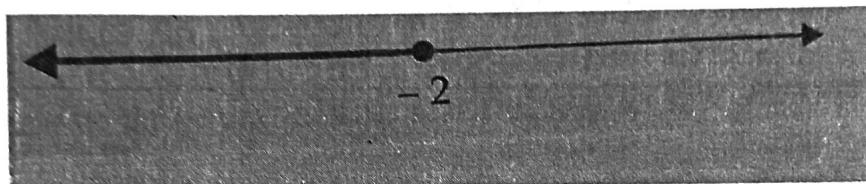
GOODLEY PUBLIC SCHOOL
HALF -YEARLY EXAMINATION (2023-24)
CLASS XI
SUBJECT: MATHEMATICS (041)

TIME: 3 Hours**MAX. MARKS 80****General Instructions:**

1. This Question Paper has 5 Sections A ,B ,C, D and E.
2. Section A has 20 MCQs carrying 1 mark each.
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 2 and 1 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Qs of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

SECTION A**Section A consists of 20 questions of 1 mark each.**

1. If $A \cup \{a,b\} = \{a,b,c,d,e\}$, then the smallest set A will be
 (a) $\{c,d,e\}$ (b) $\{a,b,c,d,e\}$ (c) $\{a,b\}$ (d) \emptyset
2. If $n(A)=5$, $n(B)=7$ then maximum number of elements in $A \cup B$ is
 (a) 7 (b) 5 (c) 12 (d) None of these
3. If U is a Universal set and A is a non-empty set, then which of the following is true
 (a) $A \cup U = A$ (b) $A \cup U = U$ (c) $A \cap U = U$ (d) $A \cap A' = U$
4. The function $f: A \rightarrow \mathbf{R}$, $f(x) = (x^2 - 1)$, where $A = \{-4, 0, 1, 4\}$ as a set of ordered pairs is:
 (a) $\{(-4, 15), (0, -1), (1, 0), (4, 15)\}$ (b) $\{(-4, -15), (0, -1), (1, 0), (4, 15)\}$
 (c) $\{(4, 1), (0, -1), (1, 0), (4, 15)\}$ (d) $\{(-4, 15), (0, -1), (1, 0)\}$
5. If set A and B have 3 and 4 elements respectively, then the number of subsets of set $A \times B$ is
 (a) 2^3 (b) 2^4 (c) 2^{12} (d) 2^7
6. Domain of $\sqrt{a^2 - x^2}$ ($a > 0$) is
 (a) $(-a, a)$ (b) $[-a, a]$ (c) $[0, a]$ (d) $(-a, 0]$
7. If $\sin \theta + \operatorname{cosec} \theta = 2$, then $\sin^2 \theta + \operatorname{cosec}^2 \theta$ is
 (a) 1 (b) 2 (c) 3 (d) 4


8. The value of $\frac{\cos(\pi+x)\cos(-x)}{\sin(\pi-x)\cos(\frac{\pi}{2}+x)}$ is
 (a) $\sin^2 x$ (b) $\cos^2 x$ (c) $\tan^2 x$ (d) $\cot^2 x$

9. If $(\frac{1+i}{1-i})^x = 1$ and $n \in N$ then
 (a) $x=2n+1$ (b) $x=2n$ (c) $x=4n$ (d) $x=4n+1$

10. The value of $\sqrt{-25} \times \sqrt{-9}$ is

(a) 15 (b) -15 (c) $15i$ (d) $-15i$

11. Solution of linear inequality in variable x is represented on given number line is

6!
3!
→ 6 x 5 x 4 x 3!
2!

(a) $x \in (-\infty, -2)$ (b) $x \in (-\infty, -2]$ (c) $x \in (-2, \infty)$ (d) $x \in [-2, \infty)$

12. If $x < 5$, then

(a) $-x < -5$ (b) $-x \leq -5$ (c) $-x > -5$ (d) $-x \geq -5$

13. The value of $\frac{6!}{3!}$ is
 (a) 2! (b) 2 (c) 120 (d) 3!

14. The number of different 4-digit numbers that can be formed with the digits 2, 3, 4, 7 and using each digit only once is

(a) 120 (b) 96 (c) 24 (d) 100

15. There are 10 persons in a party and if each two of them shake hands with each other, how many hand shake happen in the party?

(a) 20 (b) 25 (c) 45 (d) 30

16. If $(2a+2b)+i(b-a) = -4i$, then the real values of a and b are respectively:

(a) 2, 3 (b) 2, -2 (c) 3, 1 (d) -2, 2

17. The total number of terms in the expansion of $(x + a)^{100}$ is
 (a) 50 (b) 100 (c) 200 (d) 101

18. The sum of exponents of x and y in the expansion of $(x + y)^{10}$ is

(a) 11 (b) 10 (c) 20 (d) none of these

30/8/2022
30/8/2022
DIRECTION: In the question number 19 and 20 , a statement of Assertion(A) is followed by a statement of Reason(R) . Choose the correct option

19. Statement A (Assertion): If $3x+8 > 2$, then $x \in \{-1, 0, 1, 2, \dots\}$ where x is an integer
Statement R (Reason): The solution set of the inequality $4x+3 < 5x+7$ for all $x \in \mathbb{R}$ is $[4, \infty)$

- (a) Both assertion (A) and reason (R) are true and reason(R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true and reason(R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reasons (R) is false.
- (d) Assertion (A) is false but reasons (R) is true.

20. Statement A (Assertion): The number of ways in which 5 students of a class out of 40 students can be taken for an excursion party is $40C_5$

Statement R (Reason): The number of combinations of n distinct objects taken r at a time is given by nC_r .

- (a) Both assertion (A) and reason (R) are true and reason(R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true and reason(R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reasons (R) is false.
- (d) Assertion (A) is false but reasons (R) is true.

SECTION- B

Section B consists of 5 questions of 2 marks each.

21. If $f(x) = ax + b$, where a and b are integers, $f(-1) = -5$ and $f(3) = 3$. Find a and b .

22. If $\tan A = \frac{a}{a+1}$, $\tan B = \frac{1}{2a+1}$ then find the value of $A + B$

23. If $\sin x = \frac{3}{5}$, $\cos y = \frac{-12}{13}$, where x and y both lie in second quadrant, find the value of $\frac{\sin A \cos B}{\sin(x+y)}$

OR

Find the value of $\tan 75^\circ - \cot 75^\circ$

24. Find the conjugate of $\frac{1+7i}{(2-i)^2}$

OR

Express in the form of $a+ib$: $(\frac{1}{3} + 3i)^3$

25. Calculate $(96)^3$ using Binomial theorem.

SECTION- C

Section C consists of 6 questions of 3 marks each.

26. For any two sets A and B , prove the following using properties of sets:

$$(i) A \cup (B - A) = A \cup B \quad (ii) (A \cap B) \cup (A - B) = A$$

27. Prove that: $\frac{\tan 5\theta + \tan 3\theta}{\tan 5\theta - \tan 3\theta} = 4 \cos 2\theta \cos 4\theta$

OR

Prove that $\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \cos x$, where $0 < x < \frac{\pi}{4}$.

28. Find the value of $\left| (1+i) \frac{(2+i)}{(3+i)} \right|$

29. In how many ways can the word CHRISTMAS be arranged so that letters C and M never occur together?

OR

Find r if: $5_{P_r} = 6_{P_{r-1}}$

30. Which is greater: $(1.2)^{4000}$ or 800?

31. Expand the expression: $(x+1)^6 + (x-1)^6$.

OR

Show that $3^{2n+2} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

71
31 (7-3)1

SECTION-D

Section D consists of 4 questions of 5 marks each.

32. Let $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3\}$ and $B = \{3, 4, 5\}$. Find A' , B' , $A' \cap B'$, $A \cup B$ and hence show that $(A \cup B)' = A' \cap B'$. Draw venn-diagram in each case.

33. If $P = \{9, 4, 25\}$ and $Q = \{1, 2, 3, 5, -2, -3, -5\}$. A relation R is defined from P and Q as

$R = \{(x, y) : x = y^2, x \in P, y \in Q\}$.

- (i) Write this relation in Roster form.
- (ii) Draw arrow diagram for the above relation.
- (iii) What is its domain, range and codomain?

Set A (Com) Set B (Com) OR

Let $f = \{(x, \frac{x^2}{1+x^2}) : x \in R\}$ be a function from R into R. Determine the domain and range of f.

34. How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

35. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl? (ii) atleast one boy and one girl? (iii) atleast 3 girls?

OR

If $n_{P_r} = 336$, $n_{C_r} = 56$. Find n and r and hence find $n - 1_{C_{r-1}}$.

SECTION- E

Section E consists of 3questions of 4 marks each.

CASE STUDY- 1

36. Read the following text and answer the following questions based on the same:

Consider the following real -valued functions : $f(x)$, $g(x)$ and $h(x)$ defined as

$$f(x) = |x|$$

12

$$g(x) = [x]$$

$$h(x) = x^2$$

- (i) Write the domain and range of the function $f(x)$.
- (ii) Draw the graph of $f(x)$

OR

Draw the graph of $g(x)$

- (iii) Find the domain and range of $h(x)$

CASE STUDY -2

37. Trigonometry is the combination of two words –‘Trigon’ means triangle and metron means measure. It is a branch of geometry that studies relationship between lengths and angles of a triangle. Degree and radian units of measurement of angles are used ,also called Indian system of measurement of triangles . In this system π radian = 180^0 ; $1^0 = 60$ minute;

1 minute = 60 seconds. Length of arc l is given by $l=\theta r$.

On the basis of above information answer the following questions:

- (i) Convert $\frac{11}{36}$ radians into degree, minutes and seconds.
- ii a. Find the length of an arc made by minute’s hand of a clock in 40 minutes having radius 1.5cm.

OR

If the arcs of the same length in two circles subtend angles 65^0 and 80^0 at the centre, then find the ratio of their radii.

- (ii) Convert $\frac{7\pi}{18}$ into degrees.

CASE-STUDY -3

38. Four friends decide to play a game of cards .They picked a normal deck of cards with 52 playing cards.

The deck has 4 suits(Hearts, Diamonds, Spade and Clubs). Hearts and Diamonds are red in colour while Spades and Clubs are black in colour. Each suit has 13 cards each with one Ace(A), 9 numbered cards(2 to 10) and 3 face cards (Jack J , King K and Queen Q).

Based on the above information answer the following questions:

- (i) What is the number of ways of choosing 4 cards of the same suit?
- (ii) What is the number of ways of choosing 4 cards of same colour?

OR

- Find the number of ways of choosing two red cards and two black cards.
- (iii) Find the number of ways of choosing 4 face cards.